27.5 C
Los Angeles
Friday, July 19, 2024

NASA’s Moonquake Study: Key Insights from Marshall Chief Scientist

TechnologyNASA's Moonquake Study: Key Insights from Marshall Chief Scientist

Unveiling the Secrets of the Moon: A NASA Study

Exploring Lunar Geology with Chief Scientist Renee Weber

The Moon holds clues to the evolution of Earth, the planets, and the Sun, and a new NASA-funded study is helping scientists better understand some of the mysteries beneath the surface of our nearest cosmic neighbor. The co-author of that study is chief scientist of NASA’s Marshall Space Flight Center, Renee Weber, who is also a member of NASA’s Artemis Science Team – a broad group of scientists from around the agency working to commence a new era of deep space science and exploration.

Understanding Lunar Seismology and Geophysics

As a lunar seismologist and lunar geophysicist, Weber provides expertise to the Artemis Science Team, including knowledge of the types of seismic events that can occur on the Moon, to better understand its internal geology and surface environment.

Insights from the Latest Study

The latest study revealed that the Moon is still geologically active and presents evidence that tectonic faults, generated as the Moon’s interior gradually cools and shrinks, are found near some of the areas NASA identified as candidate landing regions for Artemis III – the first Artemis mission planned to have a crewed lunar landing.

Mapping Seismic Hazard on the Moon

“This study looked at tectonic faults and steep slopes in the lunar South polar region and found that some areas are susceptible to seismic shaking and regolith landslides,” Weber said. “Once the faults were mapped, we calculated the sizes of potential moonquakes that could be generated to create a map of seismic hazard in the vicinity of tectonic faults and steep slopes.”

Unveiling Young Thrust Faults

The study discovered that relatively small, young thrust faults, called lobate scarps, are widely distributed in the lunar crust. The scarps form where contractional forces break the crust and push, or thrust, rock on one side of the fault up and over rock on the other side. The contraction is caused by cooling of the Moon’s still-hot interior and tidal forces exerted by Earth, resulting in global shrinking. The scarps were identified in images taken by the Lunar Reconnaissance Orbiter Camera onboard NASA’s LRO (Lunar Reconnaissance Orbiter).

Implications for Future Lunar Exploration

The formation of the faults is accompanied by seismic activity in the form of shallow-depth moonquakes. Such shallow moonquakes were recorded by the Apollo Passive Seismic Network, a series of seismometers deployed by the Apollo astronauts, and could potentially also be recorded by a new seismic instrument scheduled to launch next year aboard an upcoming CLPS (Commercial Lunar Payload Services) flight. That instrument – the Farside Seismic Suite – will return the agency’s first seismic data from the far side of the Moon, helping scientists to understand the region’s tectonic activity.

Future Prospects and Mission Planning

“To better understand the seismic hazard posed to future human activities on the Moon, we need new seismic data, not just at the South Pole, but globally,” Weber said. “Missions like the upcoming Farside Seismic Suite, as well as future potential missions like the Lunar Geophysical Network concept, will expand upon measurements made during Apollo and add to our knowledge of global seismicity.”

Conclusion: Paving the Way for Human Exploration

As NASA develops long-term infrastructure on the lunar surface, Weber’s research will provide invaluable insight for the Artemis Science Team that will be refining mission architectures that preserve flexibility for science and operations at a variety of landing sites and will apply new scientific knowledge, such as continued research on seismic measurements, gathered along the way.

Check out our other content

Check out other tags:

Most Popular Articles